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Abstract. This paper is focusing on studying the nature of equations of motion of a six degree of free-
dom of a Minicopter. Choosing a Minicopter is challenging in the field of control because it is
a highly nonlinear, multivariable, and underactuated system, in addition to its advantages such as high
maneuverability and stationary flight. Underactuated systems, defined as a mechanical system in
which the dimension of the configuration space exceeds that of the control input space, that is, with
fewer control inputs than the degrees of freedom. Modeling of such a system is not a trivial problem
due to the coupled dynamics of the aerial vehicle. The dynamic model is formulated using the Newton -
Euler method for translational and rotational dynamics, and the contribution of this work is deriving
an accurate and detailed mathematical model. Then disturbances that represent outdoors environment
were added to be used in the simulation, the topic, which was unmentioned before in most of the lite-
rature. The kinematics and dynamics were studied then equations of motion were explained. The state
space model was derived with the existence of disturbances in the earth frame. An application was
conducted by LabVIEW simulation program using Runge-Kutta 2 method. Correlations were ana-
lyzed on all parameters of motion equations; four slide mode controllers were implemented to stabil-
ize the altitude and attitude. Finally, Lyapunov stability was presented.

Keywords: Minicopter, disturbances, Lyapunov stability, UAV control

1. INTRODUCTION

Nowadays, mini-drones invaded several application domains [1-3]. The control of aerial
robot such as Minicopter requires dynamics in order to account for gravity effects and aero-
dynamic forces [1-2]. These aerial vehicles have high maneuverability and stationary flight
[4-5]. In this work equations of motion were concluded of the whole system using the New-
ton-Euler formulation for translational and rotational dynamics of a rigid body [1, 6]. This
paper is focusing on studying the nature of equations like nonlinearity and coupled variables,
then adding disturbances that were presented as an environment for outdoors simulation [3, 7—
9], which is unmentioned in most of the literature. The structure of the paper is as follows:
describing kinematics and dynamics then explain equations of motion.
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2. REFERENCE SYSTEMS FOR THE UAV MINICOPTER

In order to describe the Minicopter motion only two reference systems are necessary:
carth inertial frame (E-frame) and body-fixed frame (B-frame). An Inertial frame is a system
that uses the North, East, and Down (NED) coordinates and the origin of this reference system
is fixed in one point located on the earth surface as shown in Figure 1, and the (X, Y, Z) axes
are directed to the North, East, and Down, respectively. The mobile frame (XB, YB, ZB) is
the body fixed frame that is centered in the Minicopter center of gravity and oriented as
shown in Figure 1. The angular position of the body frame with respect to the inertial one is
usually defined by means of the Euler angles: roll ¢, pitch 0, and yaw y. As the vector:

c=[¢ O \|1]T, ¢ and Oe}—g,g{; y € |-m,nf. The inertial frame position of the ve-

hicle is given by vector &=[x y z]T [1-2, 5-6]. The transformation from the body frame to

the inertial frame is realized by using the well-known rotation matrix Cj [1, 4, 6]:

cObcy sOsOcy—cosy sodosy+cdsOey
Cp =|cOsy cocy+sdsOsy cdsOsy—sdcy|,
-s0 shcO chcH

which is orthogonal, and c0 equivalent to cos0 also s6 means sin6, while the transforma-
tion matrix for angular velocities from the body frame to the inertial one is s [3, 5].

1 singtan® cosdtan6
S=|0 cos ¢ —sin¢ |,
0 sindsecO cosdsecH

where 6=85.Q, &= Cp, .V, the angular velocity Q is defined by the vector Q=[pg r]T , and
the linear velocity is defined by the vector V =[u VW]T in the body frame [1-6].

3. AERODYNAMIC FORCES AND MOMENTS IN AXIAL FLIGHT

The UAV Minicopter systems are quite complex; their movements are governed by sev-
eral effects either mechanical or aerodynamic. Our aim is to provide the mathematical equa-
tions driving the dynamical behavior of the Minicopter by means of a generalization of the
Quadcopter model presented in [1, 5—7]. The motion of a rigid body can be decomposed into
the translational and rotational components. Therefore, in order to describe the dynamics of
the Minicopter, assumed to be a rigid body, the Newton-Euler equations, that govern linear
and angular motion are used. In order to get equations of motion of entire system, the follow-
ing assumptions have been made:

- The Minicopter is a rigid body.
- The Minicopter has a symmetrical structure.

Therefore, the following equations are obtained:

{m]3x3 03X3} 14 N Qx(mV) _ XF
033 7 J|Q| [Qx(JQ)| |[=M ]|
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3.1. Force Analysis
a. Thrust Force

The main force affecting the aircraft movement is the thrust force resulting from the mo-
tors and propellers that leads to raise the aircraft in the air. The model consists of 6 motors,
and according to the suggested engineering model, the motors in the model are parallel and
perpendicular on the aircraft surface, so we conclude that the total thrust force vector of the

aircraft is T and it is the sum of the propellers thrust force vectors 2;7}. The main rotor

thrust 7 orientation is expressed in terms of the lateral and longitudinal cyclic tilt angles a and
b (Fig. 1) [4].

Figure 1. Thrust vector Figure 2. Force components on blade in vertical flight

Then, the main rotor thrust may be expressed as a vector in the body fixed fame as:
sina cosb

T

cosa sinb .|T | By applying the small-angle assumption 7, the total

B .2 .2
\/l—sm asin“b cosa cosh

lift of the main Minicopter tilted in comparison to the motor shaft can be rewritten as:
T :|T |.[a b l]T . The aerodynamic forces and moments are derived using a momentum

combination; the left force depends on the angular velocity # and the geometric dimensions
of propellers as seen in a top view of the rotor disc in Fig. 2-a where blade rotation is counter-
clockwise with angular velocity . The blade radius is R; the tip speed therefore is ®R. An
elementary blade section is taken at radius » of chord length ¢ and span-wise width d,. Forces
on the blade section are shown in Fig. 2-b. The flow seen by the section has velocity compo-
nents: or in the disc plane, (V. + v;) in the axial, and induced velocities perpendicular to it.

The angle 0, denotes the blade pitch angle, and ¢, is the inflow angle. In addition, d7, dQ,
dL, and dD are the elementary thrust, torque, lift, and drag forces respectively. The thrust and
torque, are [5]: |Tl~|=pCTAR2(Dl-2 , Qi| =pCQAR3 ®?, where blade rotation is with angular

i

velocity o, the blade radius is R, Crand Cp are the thrust and torque coefficients respectively,
p is the air density, and A the disc area. The thrust and torque coefficients can be written as:

1 20 1 0 +y.| C
cr =—0Cpq |:_b_(Yc+Yi)}a CQ=EG[CLQ(YC+Vi){_b_u}+_D

2

4 3 3 2 4
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where o is the rotor solidity, C;, is the lift slope coefficient, Cp is the drag coefficient 7.,
and v, are the inflow factors [5]. Finally, the total force of thrust generated by the six propel-
lers in the earth frame is defined as:

0 (choysO+sdsy)Xo|T]
Frp=Cy| 0 =[(cosOsy —sdcy) X8 |7
5| B (coc®) X7} g

b. Drag Force

It is the opposing force to the travelling of the Minicopter in air, which is resulting from
the aerodynamic friction, air density, velocity, and can be expressed by the following equation

at the earth’s frame: F,; = K;;.&, where Kpy is a diagonal matrix related to the aerodynamic
friction constant &, [4][5].

c. Gravitational Force

The gravity force is directed toward the center of the earth and the relation of gravity
force in the earth frame by [1][2]: Fig; =m[0 0 g]g.

d. Disturbance Force

Other forces like Coriolis force from the earth, wind, and Euler forces are considered as

disturbances, summarized as Fp; in the Earth frame: F,=[F, Fd[y Fd[z] There-

fore, the equations of motion that govern the translational motion with respect to the Earth
frame are:

SM=Mp—M 4 +M,,,+Mp =JQ+Qx(m.Q)

gyro
)
M, k¢ 0 0 M irg i
29 ..
M, | —| k9 + 0 + 0 +H Mag | =J|V]|
M, g k,,\[lz . J 0, E J, o, E Mdl\y E z E

where Qx(m.Q) has a small effect and approximately equal to zero. Therefore, the equations
after some simplifications will be:

U, = (cocysO+sosy)uy /m=a, (9,0, \V)Z?ZI 0312

_ 5
x=U, + 6 2
m m Uy :(C(I)SeS\V—S(I)C\IJ)uT/m:ay(q)aea\l])zl':lo‘)i

) k. Fyp
yzUy—;ty+7y UZ=(c¢c€))uT/mzaz(¢,9)zi6=10312

_ <6 _ 256 12
Z:UZ—ﬁZ‘ g+_Fd[z Z/lT_Z:l'=1|7;|_p(jTAR zi:lwi

a=—1->0
m
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Therefore, the final equations with respect to the earth frame are:

Pl Pl
i —ai+U, Fm U, F’"
il=| —ar+U, |+ 22 =| U, H 2R
. m m
‘ _aZ+UZ —8 Fd[z UZ -8 Fdlz

3.2. Moments Analysis

The aircraft is affected by several types of moments: the thrust moment resulting from the
motors, the motors inertia moment, the aerodynamic moment, and the disturbances moment.
Supposing, the inertia matrix of the aircraft is J, the structure of the aircraft is symmetric, and

the inertia matrix is of the following form: J=[J,, 0 0; 0J,,0; 0 0 J, ]T ; J e Ry [5],

therefore, the moments acting on the center of the aircraft can be analyzed in the following:
a. Propeller Moments

The moment My, , is part of the external moments, that described by the propeller
thrust Z?lei generated by the propellers, and the distance ! from CG to the center of the
propeller. The attitude of the vehicle in the air, i.e., Euler angles c=[¢ 6 \|1]T change, by
controlling the angular velocity of the motors. This means, there is a different thrust moment
over time My =[M,M, M,,]T , where M, M, M, are the moments about the axes

Xpg,Yp,Zp in the body frame [1, 3, 4], noticing that the torque vectors across each other are

in the same direction, and the motors that are closest to each other have torque vectors in op-
posite directions as in Fig. 3.

1 ,/
\\\L/\s 30 >
AN
A BN Y
AN N
Yoy ek

Figure 3. Minicopter architecture
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This is the design requirement to keep the Minicopter from spinning out of control [1, 5, 7].
The moments generated by motors as shown in Figure 3, can be explained as follows:

— ﬁ ]
(T3] = 7al =[] +75])

1
My = E1(|T3|—|T4|+|T5|—|T6|+2|T1|_2|T2|)

pCQAR3 (0)12 +0)42; +0)% —o)% —0)% —co%

b. The aerodynamic moment

It is the moment resulting from the aerodynamic friction in air and is proportional to the
torque around the axes, and it 1is expressed by the following equation:

P T
M, =K RI.Qz =Kp; [(I)z 6° \ifz} , where Kp; is a diagonal matrix related to the rota-

tional aerodynamic friction constant by the parameter &, [4-5].

¢. Disturbance moment

It is the total of the disturbances affecting the torque around the aircraft axes resulting
from disturbances in the motors movement, the wind, and the load in the aircraft, expressed

T
as: Mpy = [Mdld) M gpq Md[qf] :
d. Propeller Gyroscopic effect

The  rotation of  the  propellers  produces a  gyroscopic effect:

. . T
M -J,.00, J.bo, O] [3], where J, is the rotational inertia of the propeller

wro =[
[NmS 2 } , and o, [rad/S] is the overall propeller speed: ®, =—w| +®y —®3 + 04 — 05 + 0.

e. Yaw counter moment

Differences in rotational acceleration of the propellers produces a yaw inertial counter

moment as follow: M ,.er =[0 0 Jr(br]T [3]. Therefore, the equations of motion that
govern the rotational motion with respect to the body frame are:

M =Mp—M g + Mgy, + M +Mpy =JQ+Qx(m.Q)

counter
.2 .
M, kr¢ —J 00, 0 Marg p p p
. 2 . .
M, | —|k® + Joo, | +] O H Mgeg | =Jq| + q|xJ|q|
M, |, kr\ifz . 0 E Jro, 1y | Mapy - Flp L7 r
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M J,=J ) M
p= P +qr( 24 z)—k—r —£9®r+ drg . .
Jy Jy Jy Jy . |Transformation  Equation
M _ . M |
g=May V=T ke I Marg ._g L
Jy Jy Jy o Jy Jy c= 4B q
I”=M ip (Jx_Jy)_k_,,r+J, +Md1\|1 WE "lp
JZ JZ JZ JZ ' JZ

Transformation matrix S — / when the hexa-copter tends to the stable point, therefore
the equations of angular rate will be related to the Earth frame, in addition to some assump-

tions: Ir L _Jr — 0 is a small effect around zero, and J, =J,,. Then the equations will

x J y z
be as follows:

2
U_Mp_ﬁpchAR . .
p= = O3 + Mg — 0y — 03
J, 2J,
Up=a¢(co§+mé—wﬁ—m§)
2
. . L M M, pIC_AR
¢=Up+b16\il+cl¢2+i¢ Uy = 1-__T (m§+m§+2w%—mﬁ—mg—2m%)
J, J, 2J,
. . o M
e=Uq+b2¢q;+c292+% Uq=a9(m§+m§+2m%—m§—m§—zm§)
y
3
M M, PICQAR™ (5 5 5 5 9 9
. .2 dly U=_”=—( + + — — — )
=U,+cy" +—— O + g + 0 — 07 — O3 —O5
VEEeraey Ty T, 2J,
Ur=aw(w12+w%+w%—m%—m§—m§)
Jy=J J,=J,
b =22 Z’b2=g,clz_k_r,%=_k_r,c3=_k_r
Jy Jy Jy Jy J,

Figure 4 shows the diagram of the control system model using LabVIEW application that
contains the programming of the equations of motion. These equations require entering the
input variables and physical characteristics for getting the state variables.

4. STATE SPACE MODEL

The dynamics model presented in the translational and rotational equation set can be re-
written in the state-space form as:

X =f(X,U)+58.
where 9§ is the disturbances, and the X € R!? is the vector of state variables given as follow:

X=[x ¥ y 7z 2 ¢ ¢ 060 vy yI'.
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States
Mation.vi [Equations of Motion|
MWW Motors Rad/zec
W Force Disturbances
Physical Parameters
P Physical Parameters
States W=
M Momentum Disturbances
Inertial Matrix
P Inertial Matrix "
Initial Position
[===|nitial Position

Figure 4. Mathematical model designed in LabVIEW

Then we can conclude to the final equations of the system in state space, which governs
the transitional and rotational of the hexa-copter with respect to the Earth Frame, as follows:

Xy -a 0 0)\(x 1 0 0)\U, Fup /I m U, Fuyp /' m
X4 |=| 0 —a 0 ||xg|+|0 1 O)\U, |+| Fyp,/m |=|U, |+| Fyp, /m |;
X 0 0 -a)lxg 0 0 L)\U, %—g U, Fy,
m m
iy bixioxi+es | (1 0 0 Up) (Marg/!
f10 |=| byxgxppterxip [+ 0 1 0|\ U, |+| My ! J,
N12) | byxgxporesaty | \O 0 DU, ) (Mary /s

The suggested real and complex dynamics mathematical model were derived as shown in
the equations before. Basically, this model was consisting of 6 equations and characterized by
nonlinearity, time-variance, and coupling among the system variables where any change in
the input variables leads to changes in most of the output variables. The control mechanism
consists of two-level control, the first level controls the horizontal motion using the input vec-

tor Uy =[U, U y]T , while the next level controls the attitude and altitude motion using the
control vector U =[U, U, U, U Z]T , and the command control of the Minicopter is

vector D=[x; y; z4 Vg4 ]T , which gives the position and rotation in the space. Fur-
thermore, the horizontal control (x, y) depends on the angles ¢,0 of the aircraft. With respect

to the control input vector U =[U, U y U, U, U, U r]T , 1t is clear that the rotational

subsystem is fully-actuated, it is only dependent on the rotational state variables x; to xj,,
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while the translational subsystem is under-actuated as it is dependent on both the translational
state variables x; to x4 and the rotational ones x7 to xj,. The control strategy is through

controlling the motors speed variables m;, ®, ...0¢ by a defined style explained as follows:

1. There are 3 movements that describe all possible combinations of attitude: Roll (rota-
tion around the X axis by angle ¢ ), Pitch (rotation around the Y axis by angle 0), and Yaw

(rotation around the Z axis by angle ). The roll control is obtained by changing the velocity
of motors 3, 4, 5, 6, and this movement is called lateral motion. Then the pitch control is ob-
tained by changing the velocity of all motors, resulting in the longitudinal motion. Finally, the
yaw control is obtained by changing the velocity of all motors.

2. The change of motors speed for attitude control should be fixed and based on differen-
tial control strategy as seen in Fig. 3 and equations of moments, i.e., the Pitch control around
axis Y is obtained by changing the torques around this axis by increasing (71, 73, T5) and de-
creasing another side (7%, 74, Ts) using the following equation:

Pitch _ control < [x cos 60 (|T3|—|Ty| +|T5| - |Ts|) + |1 | |72 .
The roll control is obtained as follows:
roll _control <> 1x cos 30 (| T3] —|Ty | —|Ts|+| g ).
While the yaw control is based on the torque difference between the neighboring motors:
yaw _control < Oy + 04+ 06 =) =03 = 0s.

3. Altitude control is obtained by changing all motors’ velocity with a fixed change. This
is based on the force equations in Z component, noticing that the thrust is equivalent to the
square of the motors angular velocities. To increase the altitude, all motors velocities must be
increased, and vice versa. The equation that governs the altitude is:

6
altitude _control < 3, |Tl|
i=1

From the control problem based on Fig. 5 and its angular speed correction, which govern
the attitude and altitude in space, the artificial vector U, =[U, U, U, UZ]T can be

found. This simplifies the control of the system in Pitch, Roll, Yaw and altitude movements
instead of using real motors’ velocities vector ® [5]. Now we can put the equations that con-
nect between artificial and real input vectors as follows:

Up 0 0 +ay —ay —ay +ay (o%
Uq 2619 —2616 +a9 —ay +ae —ap W3

U tay —ay —ay  tay +a 2

U, +a, +a, +a, +a +a

z z
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Figure 5. Block diagram of a dynamical system for Minicopter

5. SLIDE MODE CONTROL AND LYAPUNOV STABILITY

The sliding mode controller designing procedure is exerted in two steps. Firstly, the
choice of the sliding surface (S) is produced according to the tracking error; in the second step
a Lyapunov function is considered verifying the necessary condition for the stability in Lya-
punov law. The sliding mode control of the state variables estimated dynamics is presented by
establishing the statement of the control input. The sliding surfaces are described as follows
[4, 8-9]:

Sx=€2 +7L1€1, Sy=€4+}\,2€3, SZ=€6 +}\.3€5,
Sp =eg +7\,4€7, Sq =€ +7\,5€9, Sr =€) +7b6€11

such that A; >0 and e; =x;; —x;, i €[L,11], ¢, =¢;. The following Lyapunov function is
chosen: V'(S,) = ES)% , then the necessary sliding condition is verified and Lyapunov stability

is guaranteed. The chosen law for the attractive surface is the time derivative of V'(S,.) satis-
fying (S,.S, <0) [8, 9] where:

. . . L F
Sx :—leigl’l(Sx): Xogd — X2 +7\.1€1 = X4 taxp —Ux _dlx

+ }\’lél
F,

U, =—ksign(S,)+ax, ——dlx Xy +hiey

m

The same steps are followed to extract U y,U -U p,U q,Ur :
F
U, =k, sign(S, )+ ax —%Jr g +hge,

. F,
U, =—kysign(S,)+ axg —ﬂ+g+'z'd +A3eq,
m
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T 1 By +aeg,

Jx

M 10

Up = —k4 sign(Sp) —blxl()xlz —C1X82 —

+q4 +Aseg,

. 2
Uy = —ks sign(S,) —byxgxp —coxjp — I
v

. 2 Md1\|/ .
Ur = _k6 s1gn(Sr)—@x8x10 —C3X[p —— +7y +7\‘6612'
X

6. EXPERIMENTS AND RESULTS

The system’s parameters that are used in the simulation of the model, are listed in table 1.
Real and complex dynamics model was taken into account, which has addressed the nonli-
nearity, time variance, under-actuation, and disturbances with respect to the earth frame. An
application was conducted by LabVIEW simulation program using Runge-Kutta 2 method
with fixed step 0.05 (sec). Correlations were analyzed on all parameters of motion equations;
four slide mode controllers were implemented to stabilize the altitude and attitude as shown in
figures (6) to (9) that we may notice the stability and disturbances free as possible in our re-
sponse with multiple set points taken into account. The tuning process achieved after multi
attempts of experiments. Our scenario is the hovering flight at altitude 10 meters in the air.

Table 1. Parameters used in the simulation
m=4 kg £=9.806 m/s’ 1=0.36 m
I.1, = 3.8¢>N.m.s*rad | R=0.15m k= 4.8¢” N.s/m

I, =7.1¢*N.ms*rad | 4=0.071 m® | k.= 6.4¢* N.m.s/rad

Cr=0.01458 Cp=1.037¢ | p=1.293kg/m’
16- 40-
12] Z0]]
o k= i
3 e a2l ‘
£ S
=« 4 Altitude 510' | J
| Process [§] g i
Setpoint
0 40 80 120 0 40 80 120 160

Simulation Time (Sec) Simulation Time (Sec)

Figure 6. Stability response of altitude and control signal

12+ 1.2
E ﬁ S 0.8
kel -
E 84 . E 0.4 N
g’ Pit::):ess b'-] [E I ] o
< Setpoint 5 1
= 4 = -0.44
2 =
T 3087 Ll

0 . . r T 1 -1.2 T T T 1
o 20 40 60 0 10 20 30 40

Simulation Time (S) Simulation Time (S)

Figure 7. Stability response of pitch angle and control signal
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Figure 8. Stability response of roll angle and control signal
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Figure 9. Stability response of yaw angle and control signal

7. THE CONCLUSION

In this work, controllers were designed and were tuned in order to control a Minicopter,
a special type of UAV. In this paper, real and complex dynamics model was taken into account,
which has addressed the nonlinearity, time variance, under-actuation, and disturbances with
respect to the earth frame. An application was conducted by LabVIEW simulation program
using Runge-Kutta 2 method. Correlations were analyzed on all parameters of motion equa-
tions; four slide mode controllers were implemented to stabilize the altitude and attitude. The
stability and disturbances free as possible in our response with multiple set points taken into
account. The tuning process achieved after multi attempts of experiments. Future work is to
develop a precise trajectory control by using robust techniques to stabilize the whole system
and drive the Minicopter to the desired trajectory of Cartesian position, attitude, and airspeed.
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