УДК.620.179.16

P. Р. Хасанов, аспирант E-mail: beif@mail.ru *М. В. Сяктерев*, магистрант
E-mail: maks.syakterev@mail.ru *В. С. Егоров*, студент
E-mail: skillet2828@mail.ru

Ижевский государственный технический университет имени М. Т. Калашникова

Стенд для контролируемого нагрева при испытаниях композитной арматуры

В работе приведено описание экспериментальной установки для исследований скорости распространения и затухания стержневых волн при нагревании в композитной арматуре эхо-импульсным методом. Рассмотрено оборудование для возбуждения, приема и регистрации акустических сигналов, распространяемых в стержнях композитной арматуры. Установка позволяет разогревать фрагмент композитной арматуры длиной 1 м в течение 45–120 минут с непрерывной регистрацией температуры. Точность установления температуры не хуже 0,1 °С.

Ключевые слова: композитная арматура, волноводный метод, акустический контроль, линейно-протяженные объекты.

Введение

Композитная арматура - это неметаллические стержни из стеклянных, базальтовых, углеродных или арамидных волокон, пропитанных термореактивным или термопластичным полимерным связующим с последующим отверждением [1]. В качестве типичных измеряемых характеристик используют предел прочности при растяжении, модуль упругости, предел прочности при изгибе, плотность, степень армирования и т. д., но возможны изменения в композитной арматуре, которые происходят и после ее изготовления, в частности, не закончившиеся термохимические процессы в структуре композитной арматуры. Существуют методы дефектоскопии композитной арматуры, основанные на волноводном методе контроля [2, 6]. Волноводный метод основан на способности низкочастотных акустических волн распространяться по волноводу на значительные расстояния [7-11]. Цель работы – разработка стенда, обеспечивающего нагрев композитной арматуры, с одновременным измерением скорости акустической волны для проведения исследований незавершенных процессов отверждения и полимеризации, а

[©] Хасанов Р. Р., Сяктерев М. В., Егоров В. С., 2020

также исследования на возможные изменения структуры арматуры при воздействии температур (до 70 °C).

Волноводный метод неразрушающего контроля композитной арматуры

Волноводный метод неразрушающего контроля, реализуемый с помощью дефектоскопа АДНШ, возможно применить для структуроскопии и дефектоскопии стеклопластиковой композитной арматуры, при котором информативным параметром является скорость распространения стержневых волн [12–17]. Метод реализуется при помощи посылки в объект контроля акустического импульса с последующей регистрацией отраженного эхосигнала тем же датчиком. Блок-схема дефектоскопа представлена на рис. 1.

Рис. 1. Структурная схема дефектоскопа АДНШ/АДНКТ: ПЭП – пьезоэлектрический приемник; ПУ – переходное устройство; ГПУ – блок генератора и усиления; УКП – блок усиления и коммутации; АЦП – аналогоцифровой преобразователь

Эхограмма композитной арматуры длинной 844 мм содержит зондирующий и серию донных импульсов (рис. 2). Измерение времени производится в автоматическом режиме между первым и вторым донным импульсом при инверсии второго донного импульса. Эхограммы обрабатываются с применением специального программного обеспечения, реализующего линейную интерполяцию по семи точкам с последующим определением времени сдвига между импульсами по максимуму корреляционной функции. Возбуждение и прием выполняется с помощью пьезоэлектрического преобразователя, работающего в совмещенном режиме.

158 Приборостроение в XXI веке – 2020. Интеграция науки, образования и производства

Рис. 2. Эхограмма волноводного контроля АКП

Рис. 3. Блок-схема установки

Экспериментальная установка

На рис. 3 показана экспериментальная установка и схема ее нагрева. Установка состоит из двух камер, верхняя камера предназначена для успокоения воздушного потока, в нижнюю камеру устанавливается испытуемый образец. Обе камеры помещены в теплоизолированный корпус. Нагретый воздух подается в верхнюю камеру, где разделяется на 2 потока. Проходя по левому и правому каналу, нагретый воздух попадает в нижнюю камеру и удаляется через нижнее отверстие. Температура воздуха в установке контролируется двумя электронными термометрами с ценой деления каждого 0,1 °C, что позволяет оценивать среднюю температуру воздуха в камере нагрева арматуры и контролировать отсутствие градиента теплового поля рядом с образцом от правого и левого воздуховода.

В качестве нагревателя использовался профессиональный строительный фен GHG-660 Professional (таблица) с возможностью задания температуры с шагом в 10 °C и индикатором температуры воздушного потока.

Мощность, Вт	2300
Минимальная рабочая температура, °С	50
Максимальная рабочая температура, °С	660
Максимальный воздушный поток, л/м	500
Шаг задания температуры, °С	10

Характеристики строительного фена Bosch GHG-660 Professional

Проведение эксперимента

Один торец арматуры погружается в экспериментальную установку, на противоположный торец устанавливается ПЭП. Сверху в отверстие вставляется строительный фен, нагнетающий нагретый воздух, расходящийся по всей установке. Контроль равномерности нагрева осуществляется двумя термодатчиками, установленными по длине с разных сторон объекта контроля, что дает возможность контроля неравномерности нагрева и получения средней температуры.

Регулировка градиента температуры между концами арматуры осуществляется за счет смещения фена от перпендикулярного положения к воздуховоду.

Процесс нагревания производится в режиме минимальной мощности. В начале эксперимента фен устанавливается на температуру воздушного потока 50 °C. С помощью дефектоскопа АДНШ при увеличении показания температуры с термодатчиков на 1 °C снимаются эхограммы распространения стержневых волн (рис. 2). После достижения средней температуры 40 °C в камере нагрева арматуры температура воздуха на выходе фена увеличивается на 10 °C. После достижения температуры воздуха в камере нагрева 66 °C температура на выходе фена уменьшается до 50 °C и продолжается сохранение эхограмм с каждым уменьшением температуры в камере нагрева на 1°C. После достижения в камере нагрева 50 °C нагревательный фен снимается и продолжается сохранение эхограмм до падения температуры до 45 °C.

Результаты и их обсуждение

На рис. 4 представлен процесс нагрева стенда в течение времени. С левой стороны отложена шкала температуры нагрева воздуха в установке, по горизонтали – время нагрева, на шкале справа – разница температур с левого и правого термодатчиков. На рисунке видно, что процесс нагрева поделен на этапы, ограниченные точками изменения температуры нагрева воздушного потока. До линии *A* температура нагрева воздуха феном 50 °C, на участке *AB* нагрев 60 °C, на участке *BC* нагрев 70 °C, на участке *CD* нагрев 80 °C. Видно, что дисбаланс температур при нагревании не превышает 0,6 °C, а после пятидесяти градусов (участок *E*) режим охлаждения протекает с ростом разницы температуры в камере с образцом. Дисбаланс температур вызван неконтролируемым процессом охлаждения при изменении направления движения воздуха в установке для замещения горячего воздуха холодным воздухом под действием самотёка (рис. 4).

Рис. 4. Процесс нагрева с течением времени

Рис. 5. Зависимость скорости стержневой волны от температуры

Средняя скорость нагрева составила 0,5 °C /мин. Разница температур между двумя датчиками температуры при нагреве колебалась в диапазоне 0–0,6 °C (на стадии охлаждения после участка E – до 2,5 °C).

На рис. 5 показан набор зависимостей скорости стержневой волны от температуры при 4 циклах ее нагревания. По вертикали отложена скорость распространения стержневых волн *Cs*, м/с, по горизонтали – температура в камере с арматурой. Цифрами на начальных участках линий показаны циклы нагреваний образца. Разворот линии после точки 66 °C соответствует началу процесса остывания. Колебания скорости составили 100 м/с (2,1 %). Неповторяющийся цикл говорит о наличии процессов в композитной арматуре, вызванных ее нагреванием.

Выводы

Разработана экспериментальная установка, предназначенная для исследований скорости распространения и затухания стержневых волн при нагревании в композитной арматуре эхо-импульсным методом Экспериментальная установка позволяет нагревать образцы в диапазоне температур 20–66 °С. Процесс нагрева контролируется двумя термометрами с ценой деления 0,1 °С и разницей в показаниях 0,1 °С. Цикл измерения составляет 160 минут. Точность измерения скорости – 1,5 м/с.

Работа выполнена в рамках проекта №FZZN-2020-0011 (Исследование динамики и разработка алгоритмов управления мобильных роботов) по Государственному заданию Министерства образования и науки.

Список литературы

1. ГОСТ 31938–2012 Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия (с Поправкой). – Текст : электронный // Электронный фонд правовой и нормативно-технической документации : [сайт]. – URL: http://docs.cntd.ru/document/1200101115 (дата обращения: 11.12.2019).

2. Дефектоскопия композитной арматуры акустическим волноводным методом / В. А. Стрижак, А. В. Пряхин, Р. Р. Хасанов, С. С. Мкртчян // Вестник ИжГТУ имени М. Т. Калашникова. – 2019. – Т 22, № 1. – С. 78–88.

3. Пат. 2688877 RU, МПК G01N 29/04 (2006.01), С1. Способ определения прочностных характеристик полимерных композиционных материалов : № 2018117638 : заявл. 1105. 2018 : опубл. 22.05.2019 / В. А. Стрижак, А. В. Пряхин, Р. Р. Хасанов.

4. Неразрушающий контроль композитной полимерной арматуры / А. В. Бучкин, В. Ф. Степанова, В. А. Стрижак, Е. Ю. Юрин, Е. И. Никишов // Вестник НИЦ «Строительство». – 2020. – № 1 (24). – С. 23–35.

5. Влияние водопоглощения на скорость распространения нормальных волн в композитной арматуре / О. В. Муравьева, Р. Р. Хасанов, В. А. Стрижак, С. С. Мкртчян, М. В. Сяктерев, О. В. Муравьева // SIBTEST – 2019 : сб. тез. докл. V Междунар. конф. по инновациям в неразрушающем контроле. – Томск, 2019. – С. 67–68.

6. *Muravieva, O. V., Khasanov, R. R., Strizhak, V. A., Mkrtchyan, S. S.* Water absorption effect on the propagation velocity of normal waves in composite rebars // Materials Science Forum. 2019. Vol. 970. Pp. 202-209.

7. Буденков, Г. А., Недзвецкая, О. В., Стрижак, В. А. Акустика затрубного пространства добывающих и нагнетательных скважин / Г. А. Буденков, О. В. Недзвецкая, В. А. Стрижак // Дефектоскопия. – 2003. – № 8. – С. 3–10.

8. Эффективность использования стержневых и крутильных волн для контроля пруткового проката / Г. А. Буденков, О. В. Недзвецкая, Д. В. Злобин, Т. Н. Лебедева // Дефектоскопия. – 2004. – № 3. – С. 3–8.

9. Акустическая дефектоскопия прутков с использованием многократных отражений / Г. А. Буденков, О. В. Недзвецкая, Б. А. Буденков, Т. Н. Лебедева, Д. В. Злобин // Дефектоскопия. – 2004. – № 8. – С. 50–55.

10. *Муравьева, О. В.* Акустический тракт метода многократных отражений при дефектоскопии линейно-протяженных объектов / О. В. Муравьева, Д. В. Злобин // Дефектоскопия. – 2013. – № 2. – С. 43–51.

11. *Муравьева, О. В.* Оценка чувствительности метода акустической рефлектометрии к дефектам теплообменных труб / О. В. Муравьева, В. А. Стрижак, А. В. Пряхин // Дефектоскопия. – 2017. – № 3. – С. 27–34.

12. Импульсный метод измерения скорости ультразвука / Г. А. Буденков, В. А. Стрижак, А. В. Пряхин, Г. А. Полянкин, Я. Ю. Коршунов, О. В. Недзвец-кая // Дефектоскопия. – 1998. – № 9. – С. 3–8.

13. Технология акустического волноводного контроля насоснокомпрессорных труб / О. В. Муравьева, В. А. Стрижак, Д. В. Злобин, С. А. Мурашов, А. В. Пряхин // В мире неразрушающего контроля. – 2014. – № 4. – С. 51–56.

14. Акустический волноводный контроль элементов глубиннонасосного оборудования / О. В. Муравьева, В. А. Стрижак, Д. В. Злобин, С. А. Мурашов, А. В. Пряхин, Ю. В. Мышкин // Нефтяное хозяйство. – 2016. – № 9. – С. 110 – 115.

15. Анализ сравнительной достоверности акустических методов контроля пруткового проката из рессорно-пружинных сталей / В. В. Муравьев, О. В. Муравьева, В. А. Стрижак, А. В. Пряхин, Е. Н Фокеева // Дефектоскопия. – 2014. – № 8. – С. 43–51.

16. Опыт приемочного акустического контроля и упрочнения насосных штанг при сервисном обслуживании / Г. А. Буденков, О. В. Коробейникова, Н. А. Кокорин, В. А. Стрижак // В мире неразрушающего контроля. – 2007. – № 4. – С. 14–19.

17. Акустический волноводный контроль линейно протяженных объектов / О. В. Муравьева, В. В. Муравьев, В. А. Стрижак, С. А. Мурашов, А. В. Пряхин. – Новосибирск : Изд-во СО РАН, 2017. – 234 с.

R. R. Hasanov, postgraduate student E-mail: beif@mail.ru M. V. Syakterev, master student maks.syakterev@mail.ru V. S. Egorov, student E-mail: skillet2828@mail.ru Kalashnikov Izhevsk State Technical University, Izhevsk, Russian Federation

Stand for Controlled Heating during Testing of Composite Fittings

The paper describes an experimental setup for studying the propagation speed and attenuation of rod waves when heated in a composite armature by the echo-pulse method. The equipment for excitation, reception and registration of acoustic signals propagated in the rods of composite reinforcement is considered. The installation allows heating a fragment of composite reinforcement 1 m long for 45-120 minutes with continuous temperature recording. The accuracy of setting the temperature is not worse than 0.1 °C.

Keywords: composite reinforcement, waveguide method, acoustic control, linear-extended objects.